3.4.12 \(\int \cos ^4(c+d x) (a+a \sec (c+d x)) (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [312]

Optimal. Leaf size=77 \[ \frac {1}{2} a (B+C) x+\frac {a (2 B+3 C) \sin (c+d x)}{3 d}+\frac {a (B+C) \cos (c+d x) \sin (c+d x)}{2 d}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d} \]

[Out]

1/2*a*(B+C)*x+1/3*a*(2*B+3*C)*sin(d*x+c)/d+1/2*a*(B+C)*cos(d*x+c)*sin(d*x+c)/d+1/3*a*B*cos(d*x+c)^2*sin(d*x+c)
/d

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {4157, 4081, 3872, 2715, 8, 2717} \begin {gather*} \frac {a (2 B+3 C) \sin (c+d x)}{3 d}+\frac {a (B+C) \sin (c+d x) \cos (c+d x)}{2 d}+\frac {a B \sin (c+d x) \cos ^2(c+d x)}{3 d}+\frac {1}{2} a x (B+C) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*(a + a*Sec[c + d*x])*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*(B + C)*x)/2 + (a*(2*B + 3*C)*Sin[c + d*x])/(3*d) + (a*(B + C)*Cos[c + d*x]*Sin[c + d*x])/(2*d) + (a*B*Cos[
c + d*x]^2*Sin[c + d*x])/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2717

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4081

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) (a+a \sec (c+d x)) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \cos ^3(c+d x) (a+a \sec (c+d x)) (B+C \sec (c+d x)) \, dx\\ &=\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d}-\frac {1}{3} \int \cos ^2(c+d x) (-3 a (B+C)-a (2 B+3 C) \sec (c+d x)) \, dx\\ &=\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d}+(a (B+C)) \int \cos ^2(c+d x) \, dx+\frac {1}{3} (a (2 B+3 C)) \int \cos (c+d x) \, dx\\ &=\frac {a (2 B+3 C) \sin (c+d x)}{3 d}+\frac {a (B+C) \cos (c+d x) \sin (c+d x)}{2 d}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d}+\frac {1}{2} (a (B+C)) \int 1 \, dx\\ &=\frac {1}{2} a (B+C) x+\frac {a (2 B+3 C) \sin (c+d x)}{3 d}+\frac {a (B+C) \cos (c+d x) \sin (c+d x)}{2 d}+\frac {a B \cos ^2(c+d x) \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 65, normalized size = 0.84 \begin {gather*} \frac {a (6 B c+6 c C+6 B d x+6 C d x+3 (3 B+4 C) \sin (c+d x)+3 (B+C) \sin (2 (c+d x))+B \sin (3 (c+d x)))}{12 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*(a + a*Sec[c + d*x])*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*(6*B*c + 6*c*C + 6*B*d*x + 6*C*d*x + 3*(3*B + 4*C)*Sin[c + d*x] + 3*(B + C)*Sin[2*(c + d*x)] + B*Sin[3*(c +
 d*x)]))/(12*d)

________________________________________________________________________________________

Maple [A]
time = 1.07, size = 85, normalized size = 1.10

method result size
derivativedivides \(\frac {\frac {B a \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+B a \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a C \sin \left (d x +c \right )}{d}\) \(85\)
default \(\frac {\frac {B a \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+B a \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a C \sin \left (d x +c \right )}{d}\) \(85\)
risch \(\frac {a B x}{2}+\frac {a x C}{2}+\frac {3 \sin \left (d x +c \right ) B a}{4 d}+\frac {\sin \left (d x +c \right ) a C}{d}+\frac {\sin \left (3 d x +3 c \right ) B a}{12 d}+\frac {B a \sin \left (2 d x +2 c \right )}{4 d}+\frac {\sin \left (2 d x +2 c \right ) a C}{4 d}\) \(85\)
norman \(\frac {\left (\frac {1}{2} B a +\frac {1}{2} a C \right ) x +\left (-\frac {1}{2} B a -\frac {1}{2} a C \right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {1}{2} B a -\frac {1}{2} a C \right ) x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {1}{2} B a +\frac {1}{2} a C \right ) x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-2 B a -2 a C \right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (B a +a C \right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (B a +a C \right ) x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {a \left (B +C \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {2 a \left (B -3 C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {3 a \left (B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {a \left (B +9 C \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {a \left (5 B -3 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {2 a \left (5 B +9 C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}\) \(301\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(a+a*sec(d*x+c))*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/3*B*a*(2+cos(d*x+c)^2)*sin(d*x+c)+B*a*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c)+a*C*(1/2*cos(d*x+c)*sin
(d*x+c)+1/2*d*x+1/2*c)+a*C*sin(d*x+c))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 79, normalized size = 1.03 \begin {gather*} -\frac {4 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} B a - 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} B a - 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C a - 12 \, C a \sin \left (d x + c\right )}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

-1/12*(4*(sin(d*x + c)^3 - 3*sin(d*x + c))*B*a - 3*(2*d*x + 2*c + sin(2*d*x + 2*c))*B*a - 3*(2*d*x + 2*c + sin
(2*d*x + 2*c))*C*a - 12*C*a*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 2.89, size = 56, normalized size = 0.73 \begin {gather*} \frac {3 \, {\left (B + C\right )} a d x + {\left (2 \, B a \cos \left (d x + c\right )^{2} + 3 \, {\left (B + C\right )} a \cos \left (d x + c\right ) + 2 \, {\left (2 \, B + 3 \, C\right )} a\right )} \sin \left (d x + c\right )}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/6*(3*(B + C)*a*d*x + (2*B*a*cos(d*x + c)^2 + 3*(B + C)*a*cos(d*x + c) + 2*(2*B + 3*C)*a)*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(a+a*sec(d*x+c))*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.46, size = 124, normalized size = 1.61 \begin {gather*} \frac {3 \, {\left (B a + C a\right )} {\left (d x + c\right )} + \frac {2 \, {\left (3 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 4 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 9 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}}}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/6*(3*(B*a + C*a)*(d*x + c) + 2*(3*B*a*tan(1/2*d*x + 1/2*c)^5 + 3*C*a*tan(1/2*d*x + 1/2*c)^5 + 4*B*a*tan(1/2*
d*x + 1/2*c)^3 + 12*C*a*tan(1/2*d*x + 1/2*c)^3 + 9*B*a*tan(1/2*d*x + 1/2*c) + 9*C*a*tan(1/2*d*x + 1/2*c))/(tan
(1/2*d*x + 1/2*c)^2 + 1)^3)/d

________________________________________________________________________________________

Mupad [B]
time = 2.86, size = 84, normalized size = 1.09 \begin {gather*} \frac {B\,a\,x}{2}+\frac {C\,a\,x}{2}+\frac {3\,B\,a\,\sin \left (c+d\,x\right )}{4\,d}+\frac {C\,a\,\sin \left (c+d\,x\right )}{d}+\frac {B\,a\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {B\,a\,\sin \left (3\,c+3\,d\,x\right )}{12\,d}+\frac {C\,a\,\sin \left (2\,c+2\,d\,x\right )}{4\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x)),x)

[Out]

(B*a*x)/2 + (C*a*x)/2 + (3*B*a*sin(c + d*x))/(4*d) + (C*a*sin(c + d*x))/d + (B*a*sin(2*c + 2*d*x))/(4*d) + (B*
a*sin(3*c + 3*d*x))/(12*d) + (C*a*sin(2*c + 2*d*x))/(4*d)

________________________________________________________________________________________